Neurodynamics in the Sensorimotor Loop: Representing Behavior Relevant External Situations
نویسنده
چکیده
In the context of the dynamical system approach to cognition and supposing that brains or brain-like systems controlling the behavior of autonomous systems are permanently driven by their sensor signals, the paper approaches the question of neurodynamics in the sensorimotor loop in a purely formal way. This is carefully done by addressing the problem in three steps, using the time-discrete dynamics of standard neural networks and a fiber space representation for better clearness. Furthermore, concepts like meta-transients, parametric stability and dynamical forms are introduced, where meta-transients describe the effect of realistic sensor inputs, parametric stability refers to a class of sensor inputs all generating the "same type" of dynamic behavior, and a dynamical form comprises the corresponding class of parametrized dynamical systems. It is argued that dynamical forms are the essential internal representatives of behavior relevant external situations. Consequently, it is suggested that dynamical forms are the basis for a memory of these situations. Finally, based on the observation that not all brain process have a direct effect on the motor activity, a natural splitting of neurodynamics into vertical (internal) and horizontal (effective) parts is introduced.
منابع مشابه
Dynamical systems in the sensorimotor loop: On the interrelation between internal and external mechanims of evolved robot behavior
This case study demonstrates how the synthesis and the analysis of minimal recurrent neural robot control provide insights into the exploration of embodiment. By using structural evolution, minimal recurrent neural networks of general type were evolved for behavior control. The small size of the neural structures facilitates thorough investigations of behavior relevant neural dynamics and how t...
متن کاملDynamical Systems in the Sensorimotor Loop: On the Interrelation Between Internal and External Mechanisms of Evolved Robot Behavior
This case study demonstrates how the synthesis and the analysis of minimal recurrent neural robot control provide insights into the exploration of embodiment. By using structural evolution, minimal recurrent neural networks of general type were evolved for behavior control. The small size of the neural structures facilitates thorough investigations of behavior relevant neural dynamics and how t...
متن کاملReactive Neural Control for Phototaxis and Obstacle Avoidance Behavior of Walking Machines
This paper describes reactive neural control used to generate phototaxis and obstacle avoidance behavior of walking machines. It utilizes discrete-time neurodynamics and consists of two main neural modules: neural preprocessing and modular neural control. The neural preprocessing network acts as a sensory fusion unit. It filters sensory noise and shapes sensory data to drive the corresponding r...
متن کاملThe effects of sensorimotor training on proprioception and anticipatory postural adjustment of some trunk Muscle of subject with non-specific chronic low back pain
Aims and background: People with low back pain represent impaired anticipatory postural adjustments.The aim of this study was to investigate The effects of sensorimotor training on proprioception and anticipatory postural adjustment of the some trunk muscle of subject with non-specific chronic low back pain. Materials and methods: The present study was a quasi - experimental study with a prete...
متن کاملA Microcircuit Model of Prefrontal Functions: Ying and Yang of Reverberatory Neurodynamics in Cognition
In contrast to neural systems responsible for sensory processing or motor behavior, the prefrontal cortex is a quintessentially ‘‘cognitive’’ structure. A bewildering gamut of complex higher brain processes depend on prefrontal cortex. It is thus a particularly challenging quest to elucidate the neurobiology of prefrontal functions at the mechanistic level. Patricia S. Goldman-Rakic voiced this...
متن کامل